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AIIIInd-This paper presents the quasi-static: behavior of a circular cylindric:al elastic bar which is
partially embedded in a saturated elastic half-space. The bar is subjected to a lateral force and a DIOment
at a top end. The material of the half-space is governed by BioI's consolidation theory. The problem is
decomposed into two systems; namely, an extended half-space and a fictitious bar with a Young's modulus
equal to the difference between the Young's moduli of the real bar and the half-space. The governing
equation. which is formulated under the approximation that the slope of the fictitious bar is equal to the
corresponding avenae over a circular area in the extended half-space, is found to be a Fredholm integral
equation of the second kind, and solved by an appropriate numerical method for initial and final solutions.

NOTATION

a radius of circular cylindrical bar and nondimensionalizing constant
A cross sectional area of bar, nondimensionally equal to 11'

B domain of the extended half-space, Fig. 4(a)
B. fictitious bar, Fig. 4(b)

c coefficient of consolidation of the half-space defined by eqn (2d)
D region of bar in domain B, FIg.4(a)
E YOlIIII's modulus of the half-space

~,E. Young's moduli of real and fictitious bars, respectively
G shear modulus of the half-space = 82(1 +1')
I moment of inertia of bar cross section, nondimensionally equal to ".(4

J.. Bessel function of the first kind and m th order
L embedded length of bar

M, M. moments of real and fictitious bars, respectively
M" applied moment at x) =0
p/ excess pore pressure

q(z) linear intensity of the force in region D
Q, Q. shear of real and fictitious bars, respectively

Qo applied lateral force at x) =0
, radial coordinate
/ time nondimensionalized by a2/c

u(i) displacement in x!"direction at a point i in domain B
u.(z) displacement in xt-direction at a point x) = z of both fictitious and real bars

x" X2, x) cartesian coordinates
i cartesian position vector, having x" X2 and x) as orthogonal components
z x)
8 angular coordinate
I' Poisson's ratio of the half-space

11',. ii. open and closed cross sections of region D at x) =z in Fig. 4(a) respectively
(fil cartesian stress components

1V.(z,z') slope function of fictitious bar defined byeqn (21)
IV0 rigid body rotation of the fictitious bar

1. INTRODUCTION
The diffusion of load from an embedded elastic bar into an elastic half-space has been a subject
of interest and an object of numerous investiptions. chiefly because of their relevance to the
analysis and design of such structures as anchor-bar systems. pile-supported foundations.
oft-shore structures. etc. Muki and Sternberg[l] made a pilot study on the diffusion of an axial
load from an infinite cylindrical bar fully immersed in an infinite elastic medium. and later[2]
investigated the case of an axial load in a cylindrical bar that is partially embedded in an elastic
half-space. Niumpradit[3] extended the work of Muki and Stemberg[2] to the quasi-statics of a
porous elastic hatf-space completely saturated with water.

All studies mentioned above are confined to the case ofaxisymmetrical load-transfer
problems, The case of asymmetrical problems. such as the problem of an elastic bar partially
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embedded in an elastic half-space and subjected to a lateral force and a moment at the top end,
have many practical applications. Early analyses of this type for pile foundation problems
completely ignored the soil resistance and the ends of the piles were treated as either pinned or
fixed, thus resulted in extremely conservative predictions. Later, the theory of subgrade
reaction in which the embedding soil is replaced by an elastic spring of the Winkler's type was
employed. Such treatment is still unsatisfactory, as the continuity of the soil mass is not taken
into account properly, and frequently leads to incorrect results. Spillers and Stoll [4] presented a
method for analysis of piles of any ftexibilities by considering the soil mass to be an elastic
continuum and felt that a continuum approach would be more rational than a Winkler's type
analysis. Poulos[5] made a further study with an analysis which is similar in principle to that
employed by Spillers and Stoll [4], but a more refined assumption regarding pile action. A
comparative study between the elastic and subgrade reaction solutions shows that the sUbgrade
reaction theory is inaccurate but on the safe side, especially in case of very ftexibile piles.

However, the assumption that the medium is an'ideal elastic solid is not satisfactory for
cases where the medium contains a ftuid, such as in case of soil systems or in some biomechanic
applications. For such cases, it is more realistic to assume that the medium is a porous elastic
solid filled with fluid and behaves according to the theory developed some years ago by
Biot[6-8]. Biofs equations satisfy not only the requirements for the deformation of the solid
matrix but also the Darcy's law for the fluid flowing in the medium.

The main objective of this paper is to investigate rigorously the quasi-static bending of an
elastic circular cylindrical bar, partially embedded in a porous elastic half-space. The embed­
ding medium is assumed to be isotropic homogeneous and completely saturated. The problem is
formulated by using an approximative scheme similar to that used by Muki and Stemberg[2] for
the case of an elastostatic load-transfer to a half-space from an axially loaded bar. The
governing equation of the problem is found to be a Fredholm integral equation of the second
kind and can be solved by an appropriate numerical method. Numerical results of initial and
final solutions are obtained and presented. The final solution can be shown to be identical to
that of the ideal elastostatic problem, but the present approach should be considered as more
refined than aU existing elastostatic treatments.

2. QUASI·STATICS OF COMPLETELY SATURATED MEDIUM

According to the consolidation theory of Biot[6-8] for a completely saturated and
isotropic medium, the quasi-static governing equations can be written in terms of displacements
and the excess pore pressure, with a cylindrical coordinate system (r, 8, z) as the reference, as
follows

V2u +(2 _l)ae _! [~aUt9 +!!!] + ap, =0
, 11 ar r r a8 r Gar

V2u +(211 -I).!!.-!["' _~au,] +.1P.L. =0
t9 raB r r r a9 Gra9

2 ae .2I!LvU: +(211 -I) az +Gaz =0

ae
V2e=­cat

(Ia)

(Ib)

(Ie)

(ld)

where u" u, and u: are displacements of the solid matrix in r, 8 and z directions, respectively;
PI is the excess pore pressure (positive if tension), t is the time variable and

a2 la la2 a2

V
2
=a?+,ar+'?~+a?

e=au, + u, +!aU, +au:
ar r r 88 az

(2a)

(2b)

c=~.
p

(2c,d)
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In addition, V2 is the Laplace operator, e is the dilatation, I' and G are ratio and shear modulus
of the medium, c is the coefficient of consolidation, p is the unit weight of the water and k is
the coefficient of permeability of the medium.

For reasons of convenience; it is appropriate to nondimensionalize the problem by defining
a, which denotes the radius of the embedded bar, as a unit of length; and a21c as a unit of time.
All notations previously defined can still be used as dimensionless quantities, however c must
be taken as unity from now on. It should also be noted that the final (t = 00) solution is identical
to the ideal elastostatic solution since the excess pore pressure PI tends to zero there.

General solution to eqns (1) can be obtained by means of the auxiliary functions as
suggested by Schiffman and Fungaroli [9], together with the technique of Fourier expansions for
8 variable and Hankel transform for r variable as proposed by Muki[lO] for elastostatics.
Accordingly, the displacements and excess pore pressure may be written in the following forms

'"
u,(r, 8, z, t) =L u"..(r, Z, t) cos m8

",-0

u,(r, 8, z, t) = I u",,(r, z, t) sin m8
",-0

'"
uz(r, 8, z, t).= L uzm(r, z, t) cos m8

",.0

1 '"2GP/(r, 8, z, t) =L PI",(r, z, t) cos m8
",-0

where, for each harmonic m,

+ec", ezl +'YD", eZ'Y - zE", e-zl - zF", ezl

+2Gm e-zl +2Hm ezl] dp d~

1 1"'10

+;'"u".. - U"" =-2• ~2Jm_Mr) e"'[Mm e-zl + 'YBme-Z'Y
1f1 0 o-j..

- ~Cm ezl - 'YDmeZ'Y +zEme-zl +zFmezl

+2Gm e-zl +2Hm ezl]dp d~

UZ'" =2~iL'" JO~i'" Um(~r) eP
'[- e2Am e-zl - yB", e-Z'Y

o a-lOll

- ~2C", ezl - 'Y2DmeZ'Y - (1 +z~)Em e-zl

- (1- z~Fm ezl]dp d~

(3a)

(3b)

(3c)

(3d)

(4a)

(4b)

(4c)

(4d)

where P is the parameter of Laplace transforms for time variable t, ; is the imaginary constant,
a is a'real number greater than the highest real part of singularities of the Laplace transform
involved, J". is the Bessel function of the first kind of order m, Alii to H". are constants of
integration to be determined from appropriate boundary and continuity conditions, and

(5)
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Similarly, the stress components may be written in the following forms

1 00

20 u"(r, 8, z, t) =L umn(r, Z, t) cos m8
maO

1 '"
20 u,,(r, 8, z, t) =L UHm(r, Z, t) cos m8

maO

1 '"
20 uu(r, 8, z, t) =L uum(r, z, t) cos m8

maO

1 '" .
20 u,.(r, 8, z, t) = ~ Urfm(r, z, t) sin m8

maO

1 '" .
20u'z(r, 8, Z, t) =~ u....(r, z, t) sm m8

maO

1 ..
20uu(r, 8, z, t) =~ uum(r, z, t) cos me

maO

where, for each harmonic m,

(6a)

(6b)

(6c)

(6d)

(6e)

(6f)

+~3C/fl ezf +rD/fl elY +~(1- ~)Em e-zf

- ~(l +~)Fm ezf]dp d~ (7a)

1 1"'14

+
i
..Umn +UHm = -. gm(~r)e"'[-~3Am e-zf - 'Y(2r-~2)Bm e-lY

217" 0 4-ioo

+~3C/fl ezf + 'Y(2'Y2- ~2)D/fl elY +~(2 - z~)Em e-zf

- ~(2+z~)Fm ezf]dp d~ (7b)

1 ("14
+

i
..

Uzzm =217'; Jo 4-i" ~2Jm(~r)e"I[~2Am e-zt +'Y~Bm e-zY

- ~2Cm ezf - 'Y~Bm eZY +(l +z~)Em e-zt

- (1- zE)Fm ezf]dp d~

+t 2Cmezf + 'Y2D", elY +z~Em e-zf - z~Fm eZf

- tom e-zf + tHmezf]dp dt

+~2Cm ezf +rDm elY +ztE", e-zf - ztFmezf

+ tom e-zf - ~Hm ezf]dp d~

(7c)

(7d)

(7e)

(7f)

The final step to obtain the solution is to invert the integral transforms involved. For the
Laplace transform, it is quite difficult and laborious if standard exact or asymptotic methods are
used to obtain its inverse. several approximate inversion methods have been developed
specifically for various quasi-static problems. Among these methods, the approximation tech­
nique proposed by Schapery[ll] has been found to be very accurate for viscoelasticity and also
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for the case of a saturated elastic half-space loaded by a normal patch load on the surface of
the half-space[3]. This Schapery's scheme says that a time function f(t) can be determined
from its Laplace transform 1(p) according to the following simple formula

1(/) "" [pl(p )lPO.SI,. (8)

Another good property of this formula is that it guarantees exact initial (I =0+) and final (I =00)
values. Only these two extreme solutions will be considered in this paper.

It would be shown in a later section that the inverse Hankel transforms involved, in
obtaining the initial and final solutions, are integrals of the Lipschitz-Hankel type involving
products of Bessel functions. These integrals can be determined by various formulae developed
by Eason, Noble and Sneddon[l2].

3. FUNDAMENTAL SOLUTIONS

At this step, it is appropriate to first derive the solutions for the cases of a uniform shearing
force and a linearly varying normal force acting over a circular area of radius a in the interior
and on the surface of the half-space, as shown in FIgs. 1 and 2, respectively. These solutions
would serve as the fundamental solutions necessary for solving the main problem.

Uniform shearing force in the interior of the half-space
For the case of a uniform shearing force of unit intensity acting over a circular area of a

radius a at a depth Z' as shown in Fig. I, the problem is symmetric with respect to fJ =0 axis,
and the general solution denoted by eqns (3) and (6) is simply given by the harmonic terms with
m =1 only. The load is applied as a time step function.

The problem can be solved by taking the half-space as divided into upper and lower domains
by an imaginary horizontal plane at the depth Z' where the force is and using superscripts 1and
2 to denote these respective domains. In view of eqns (4) and (7); constants C.2, DI

2, FI
2 and

H.2 of domain 2 must vanish to guarantee the boundedness of the solution as z approaches
infinity. Thus there are twelve constants to be determined from the boundary and continuity
conditions; i.e. All, BII, CII, DII, Ell, FII, Gil, HII of domain I, and A I2, B I2, E I2, GI2 of
domain 2.

The boundary conditions for the free and permeable surface at z =0, 1> 0 and O:s r< 00 are

O'~z(r, fJ, 0, t) = 0,

O'~r(r, fJ, 0, t) = 0,

Domain 1 --\-..

Domain 2 ---~,.--.

O':'(r, fJ, 0, t) =0

p/(r, fJ,O, t) =O.

Permeable Surface

~----l:'--Unit Uniform
Shearing Force

~+---Saturated Elaatic
Hall· Space

(98, b)

(9c,d)

Hg. I. Uniform shearing force in the interior of the balf·space.
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Domain 2 _-+-_

20

z

.,r---- Lin.arly Varying
Normal Force

Perm.able Surface

- Saturated Elastic
Hall· Space

Fig. 2. Unearly varying force on the surface of the half-space.

The continuity conditions at z =Z', t >0 and O:s r < 00 are

ur
1(r, 8, Z', t) =ur

2(r, 8, Zl, t)

u,l(r, 8, Zl, t) =ul(r, 8, Z', t)

uzl(r, 8, z', t) =u/(r, 8, z', t)

pier, 8, Z', t) =pl(r, 8, Z', t)

(!J!i.) _(P2l.)az z.z' - az z.z'

u~z(r, 8, Z', t) =u~z(r, 8, Z', t)

for r:s I,

u~(r, 8, Zl, t) - u~,(r, 8, z', t) = sin 8

U~r(r, 8, Z', t) - U~r(r, 8, z', t) =- cos 8
and, for r> I,

u~,(r, 8, Zl, t) - u~,(r, 8, Zl, t) =0

U~r(r, 8, Zl, t) - U~r(r, 8, Z', t) =O.

(lOa)

(lOb)

(lOc)

(lOd)

(toe)

(lOf)

(lla)

(lIb)

(lIe)

(lId)

Representing the prescribed traction in eqns (II) by a single expression of a Laplace-Hankel
transform leads to

sin 81"1"+/" e'"u~(r, 8, Zl, t) - u~(r, 8, Zl, t) =-2. Jo(er)J.(r)JM)- dp de
1T/ 0 ,,-I.. P

I I ,cos 81"1"+1" e'"u zr(r, 8, Z , t) - U~r(r, 8, Z , t) = - -2. Jo(er)JM)-dp de.
1T1 0 ,,-I" P

(l2a)

(l2b)

Substituting eqns (3) and (6), in view of eqns (4) and (7), into eqns (9), (10) and (12) leads to a
system of twelve simultaneous equations from which the twelve constants are obtained.

Unearly varying normal force on the surface of the half-space
For the case of a normal force with a linearly varying intensity over a circular area of a

radius a on the surface of the half-space as shown in Fig. 2, the problem can be solved in a
similar manner as in the previous case, but involves only domain 2, and conditions are the
following. For z =0, t >0 and O:s r< 00,

u;,cr, 8,0, t) = 0,

pl(r, 8,0, t) =°
U;r(r, 8,0, t) = 0 (l3a, b)

(l3c)
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Quasi-static bending of a cylindrical cla~tic bar

O';z(r, 8,0, t) = r cos 8

O';z(r, 8,0, t) =0.

631

(l4a)

(l4b)

Representing the prescribed traction in eqns (14) by a single expression of a Laplace-Hankel
transform leads to

cos 8i"10
+i" cP'O'iz(r, 8,0, t) =-2. JMr)JM)-dp d{.

. 1TI 0 o-i.. P
(15)

Substituting eqns (3) and (6), in view of eqns (4) and (7), into eqns (13) and (15) leads to a
system of four simultaneous equations; from which the four nonvanishing constants, A12, B1

2
,

E12 and 0 1
2, can be obtained.

4. A CYLINDRICAL BAR PARTIALLY EMBEDDED IN THE HALF·SPACE

The problem of bending of a circular cylindrical elastic bar partially embedded in a
completely saturated and isotropic elastic half-space is depicted in Fig. 3. In addition to those
previously defined, following notations are introduced in this system: L denotes the embedded
length of the bar; 00 and Modenote respectively the lateral force and moment applied as time
step functions at the top end of the bar which is ftush with the surface of the
half-space; and XI' x2 and x3 are cartesian coordinates; thus XI is identical to r for 8 =0, and X3
is identical to z. Also it should be recalled that every quantity of length is nondimensionalized
by the bar radius a.

Decomposition of the problem
Following the approximative scheme used by Muki and Sternberg[2] in the elastostatic axial

load-transfer, the system in Fig. 3 are decomposed into two systems; an extended half-space B
as shown in Fig.4(a), and a fictitious elastic bar B. as shown in Fig. 4(b) with a Young's modulus
E. equal to the difference between the Young's moduli of the real bar Ep and the half-space E,
i.e.

(16)

The extended half-space B, which is characterized by the material constants E, " and c, is
subjected to a distribution bond-force q(z) which is exerted by B. on B at X3 =z in a region D
in place of the bar. In addition, B is also subjected to end forces 00- Q.(O) and Q.(L) and an
end moment Mo- M.(0) applied at the terminal cross sections as shown in Fig. 4(a). The
bond-force q(z) and the end forces Qo- Q.(O) and Q.(L) are assumed to be uniformly

Permeable Surface

~-4------CF..r----_-4---t:>Xl

-r-----+--Permeable
Circular Bar; Ep

~--tL...-- Saturated Elastic
Half - Space;
E, 'I.e

Fig. 3. Geometry of bar and embedding medium.
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20 ,.. ...

M <o)~

x, .. I a (0)'-I- x,
I 0

I

ZI

q(z)

.L- I

10:, I

, I I
I I

Z Ii,

, i i :~q(Z)!A
..1.--' '..0(il I

, ' I

: ! YRegion D

: ! IL:!Y Q ..(U!A
Domain B;

E."",c
x3·z

(a) Extended Half-Space B (b) Fictitious Bar B ..

Fig. 4. Composition of the problem.

distributed over their respective cross sections TIz(O < z < L), fio and TIL; while the end moment
Mo- M .(0) is represented at cross section fio by a hydrostatically distributed force, i.e. a
normal force as a constant function of X2 but a linear odd function of XI.

Conversely, the bond·forces and moment are exerted by the extended half-space B on the
fictitious bar B., which may be treated as an elementary elastic beam in bending, for which the
equations of equilibrium are

q(z) = - dQ.(z) (0 < z< L)
dz

Q.(z) = d~;(Z) (0< z < L)

(17)

(18)

where Q.(z) and M.(z) are fictitious shear force and moment, respectively, acting at X3 = z.
In this paper, only the case of a permeable bar is treated, yet the results should be accurate

enough for practical purposes for the case of an impermeable bar with a large slenderness ratio.
The problem will be formulated under the scheme that the displacement of the real bar is equal
to that of the fictitious bar B., and also equal to the corresponding average over the
corresponding cross section of region D in B. The stress resultants in the real bar will be
obtained by a superposition of those in B. with the corresponding integrals over the
corresponding cross section of region D in B.

Governing integral equation
To derive the governing integral equation, a bond condition between B. and B is chosen as

that the slope in the plane of loading (xlx3-plane) of B. (Fig. 4b) be equal to the cross sectional
average of the corresponding quantity of region D in domain B (Fig. 2a), i.e.,

'I'.(z) =*('I'(x)dAIn, (O:sz:sL) (19)

where x is a position cartesian vector with Xh X2 and X3 as its orthogonal components, A is the
nondimensional cross sectional area of the bar and equal to 1J', 'I'.(z) is the slope at X3 = z of B.,
and 'I'(x) is the derivative with respect to z of the displacement in xt-direction at a point x in the
domain B.

The slope 'I'.(z) of B. can be taken as a superposition of the slope of the fictitious bar
assumed to have a zero slope at X3 =L, with a rigid body rotation, i.e.
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where [ is the nondimensional moment of inertia of the bar cross section and equal to 7T/4, 1/10
denotes the rigid body rotation, and

'l'b(Z, z') =-2~*[(L- zIf (O$Z $ ZI) (21a)

= __I_(L_ z)(L-2z' +z) (z' $Z $ L). (21b)
2E",[

For B, the function 'I'(i} in eqn (19) can be expressed in the form

'I'(i) =*rQo - Q",(O}]'I'Q(i, 0) + Q~L)'1'Q(i, L}

+1[Mo- M",(O}]'I'M(i) +~f' 'l'Q(i, z')q(Z')dz' (22)

where 'I'Q(i, Zl} and 'l'm(i) are constituents of the fundamental solutions; 'I'Q(i, z') is the
derivative of the displacement in XI -direction with respect to z at a point i in the half-space
due to a uniform shearing force as shown in Fig. I, while 'l'M(i} is the same type of derivative
due to a hydrostatically distributed force as shown in Fig. 2.

Substituting eqns (20) and (22) into eqn (19), in view of eqn (17), yields

-LL 'I'b(Z, z')d~~~Z')dz' - Q",(O)'I'b(Z, 0) + ~:~) (L - z) + '1'0

=~ [Qo - Q.(O)]'I'QO(z, O}+ Q~L)'I'QO(z, L) +j[Mo- M ",(0)]'1'MO(Z)

-~ LL 'l'Qo(z, Zl) d~~~Zl) dz' (0$ Z$ L)

where 'I'QO(z, Zl) and 'l'MO(Z) are inftuence functions defined as

'I'QO(z, ZI) =*L, 'I'Q(i, zI)dA (0 $ Z, Z' $ L, z¢ Zl)

'l'MO(Z) =~ In, 'l'M(i)dA (0 $ Z$ L)

(23)

(243)

(24b)

thus can be obtained from the fundamental solutions, and are given in Appendix for final and
initial solutions.

It should be noted that the influence function 'I'QO(z, ZI) is smooth and continuous every­
where except at Z =ZI, where the magnitude of the discontinuity of the shearing stress in
xl-direction is unity. Thus the discontinuity of 'l'QO(z, Zl) at Z= z' is

(25)

Integrating the integrals in eqns (23) by parts while taking a proper account of the
discontinuities at z =z' of eqn (25), and imposing that the curvatures of the fictitious bar B'"
and the real bar at X3 =0 are equal, i.e.

E
M",(O)=j!Mo

11
(26)
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Q*(Z)_1LQ*(z')a'l'oO(z,Z')d '+1 LQ (,)a'l'b(z,z')d'
GA ° A az' z ° * z az' z

= ~O'l'QO(Z,O)+ ~}[E'I'MO(Z)-(L-Z)]-'I'o (O~z~L).
p

(27)

Equation (27) which is in the form of a Fredholm integral equation of the second kind may
be viewed as the governing integral equation of this problem. Assuming that the function Q*(z)
is a smooth continuous function in the interval 0~ z~ L, this governing integral equation is
readily amendable to a numerical solution. However, the value of Q*(z) determined from this
equation is a linear combination of the applied loadings Qoand Mo' and the unknown rigid body
rotation '1'0 of B.. The next necessary step is to determine '1'0 by noting that the bending
moment in B* vanishes at X3 = L, and this implies, due to eqns (18) and (26), that

(28)

Substituting the values of Q.(z) obtained from the governing eqn (27) into eqn (28) yields a
simple linear equation for obtaining the value of,.,o in terms of the applied loadings Qo and Mo.

At an early stage of this paper, it was found that if the curvature instead of the slope is
taken as the bond condition between B* and B, the analysis would not involve the rigid body
rotation '1'0, but the kernel in the governing integral equation is highly singular at z =z' and
nonintegrable.

Stress resultants and displacements
The real shear force Q(z) is obtained by combining the fictitious shear force Q.(z) with the

area integral of the corresponding shearing stress in region D of B, i.e.

Q(z) = Q.(z) +1O'31{x)dA (O ~ z ~ L)
n,

(29)

where O'3M) is the shearing stress in xI-direction at point x in domain B. Similarly, the real
bending moment M{z) is obtained by combining the fictitious moment M.(z) with the area
integral of the moment about X2 -axis of the effective normal stress in region D of domain B, i.e.
in view of eqns (18) and (26),

M(z) =i·Mo+l' Q.(z')dz' +1[O'33(X) - p,(x)]x, dA
p 0 n,

(O~z~L) (30)

where O'33{X) and p,{x) are normal stress in X3 -direction and excess pore pressure, respectively,
at point x in domain B. The displacement of the real bar in xl-direction ".(z) is equal to the
average over TI, of the corresponding displacement in region D of domain B, i.e.

u.{z) =~ In, u(x)dA (O:s z~ L) (31)

(32)

where u(x) is the displacement at the point x in domain B in XI -direction. By performing
appropriate integrations of the fundamental solutions derived in the previous section (FIgS. 1
and 2), eqns (29H31) can be put in the forms

ABM. lL aO'gIQ(z, z')
Q(z) = QOO'~I(Z, 0) +~ ugIM(Z) + ° Q.(z') az' dz' (0 ~ z ~ L)
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M(z) = Qo[O'~3Q(Z, 0) - p7Q(z, 0)] +Mo{~; +:~[O'~3M(Z) - p7M(Z)]}

+LL Q.(z') a~'[O'~3Q(Z,1') - p7Q(z, z')]dz'

+f Q.(z')dz' (0:$ z:$ L)

( )=Qo o( 0) +EMo o() +lL Q.(z') auQO(z, z') d (0:$ Z :$ L)
U* z A uQ z, IE

p
UM z ° A az' z
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(33)

(34)

where O'~IQ(Z, z'), O'~IM(Z), 0'~3Q(Z, z'), 0'~3M(Z), p1Q(z, z'), P1M(Z), u~(z, Zl) and UMo(Z) are
influence functions defined as

O'~IQ(Z, Zl) =~10'3IQ(X, z')dA
n,

O'~IM(Z) =~10'3IM(i)dAn,

0'~3Q(Z, z') = ~ r O'33Q(i, Z')XI dAIn,

0'~3M(Z) =*10'33M(i)XI dAn,

p7Q(z, z') =~ r p/Q(i, Z')XI dAIn,

P1M(Z) =~1p/M(i)XI dAn,

UoO(z, ZI) =~1uQ(i, z')dA
n,

UMO(Z) =*1uM(i)dA.n,

(35a)

(35b)

(35c)

(35d)

(35e)

(350

(35g)

(35h)

In eqns (32H35), subscript Q denotes the fundamental solution corresponding to Fig. 1, and
subscript M denotes the fundamental solution corresponding to Fig. 2. In addition, the integrals
in eqns (35) are constituents of the fundamental solutions. The influence functions defined by
equations (24) and (35) are given in detail in Appendix for final and initial solutions.

Another quantity of interest in this problem is the slope of the real bar, which may be taken
as identical to 'I'*(z) in eqn (20). Substituting eqns (17) and (26) into eqn (20) and integrating by
parts yield

Final solution
As time t approaches infinity, the excess pore pressure tends to zero and the solution of this

problem becomes identical to the ideal elastostatic solution. The final fundamental solutions,
which can be either solved directly according to the theory of ideal elasticity or specialized
from the transient problem presented in Section 3by putting P to zero, are given in the Appendix.

For this case, the kernel (a'l'QO(z, z')/az') involved in the governing integral equation, eqn
(27), can be shown to have an integrable logarithmic singularity at z =z'. Muki and Sternberg[2]
solved an integral equation of this type by a numerical scheme in which the kernel is separated
into a singular and a continuous portions. The range of integration was partitioned uniformly
and the unknown function Q. was assumed to be a continuous function and linear between two
consecutive mesh-points of the interval. The contribution to the improper integral from the
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singular portion of the kernel was evaluated in closed elementary form in terms of the values of
Q. at the mesh-points, and the contribution to the integral from the continuous portion of the
kernel was computed by means of trapezoidal rule.

It is found that such a numerical solution was not very efficient for solving this type of
integral equation. Following the solution scheme used sucessfully by Hopkins and
Hamming[l3] and Lee and Rogers [14] in the solution of Volterra integral equations: the range
of integration are divided into n equal partitions and Q.(z) in each partition is replaced by the
arithematic mean of its two nodal values, thus eqn (27) becomes

QG~i) - ~ ~[Q*(Zj) +Q.(Zj+I)]{['I'QO(Zj, Zj+l) - 'I'QO(Zi' zj)]/A

+['I'b(Zi' Zj+l) - 'I'b(Zi' Zj)]}

= ~o'l'QO(Zi' 0)+ ~[E'1'MO(Zi) - (L - Zi)] - '1'0' (37)

Equation (37) is a system of n+1simultaneous equations, in which the unknowns are values of
Q. at Zi for i = 1 to n+1 with ZI = 0 and Z,,+1 = L Substituting the values of Q. obtained by
solving eqn (37) into eqn (28) which can be written in the form

(38)

yields the value of the rigid body rotation '1'0' Once'l'o is found, the solution of Q. is complete
in terms of Qo and Moonly. Subsequently, the determination of the real shear force, moment,
displacement and slope of the real bar as defined by eqns (32}-(34) and (36) are straight-forward
by using the same technique of numerical integration.

Numerical results for a separate application of Qo and Moare obtained; and the reciprocal
condition, i.e. the rotation due to Qo = 1and the displacement due to Mo= 1at Z= 0 should be
equal, is used as an indicator of the accuracy of the results. As should be expected, the
accuracy of the results improves with the increase of the number of partitions n, and a more
flexible (high EL4/E,,) bar requires a bigger n than a stiffer (low EL4/E,,) one. It is suggested
herein to use n = 50 for L = 5and 10, n = 100 for L = 20 and 50, and n = 150 for L = 150 and 200.

Initial solution
The technique of solving the initial solution is similar to that used in the final solution. The

influence functions involved can be specialized from the transient solution by simply letting p
approach infinity after all limits of Zvariable are reached. The resulting influence functions and
the additional influence pore pressure are given in detail in the Appendix

6. PARAMETRIC STUDY AND DISCUSSION OF RESULTS

Parametric study
The parameters in this paper are the length-radius ratio L of the bar, the modulus ratio

between the bar and the medium E"IE, the Poisson's ratio " of the medium. The final and initial
results of the bar shear force, moment and displacement are given for different parameters
within the range of practical values as shown in FigS. 5-16.

Discussion of results
Figures 5 and 6 show the typical results of the final and initial solutions plotted along the

lenath of the bar, while FigS. 7-16 show the effects of ", L and E"IE. From these figures, it can
be seen that the initial quantities are significantly smaller than the final quantities in displace­
ment and moment, but less so in shear force. However, for bars with high values of E"IE and
large values of L, both solutions are very close to each other in all respects. In addition, it
should be noted that the effects of L and E"IE on the final and initial solutions are significant,
but the effect of Poisson's ratio" is small in most cases, except on the displacement due to the
lateral force Qo especially for bars with small values of E"IE.
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As an illustrative example and a comparison with other existing results; consider the case
of the hexagonal hollow steel pile. with a gross cross sectional area =888 cm2 and a flexural
rigidity =1600 tons-m2• investigated by Kerisel and Adam[15]. The pile. which is embedded by
4.65 m in a clay medium. is laterally loaded at the height 1.15 m above the medium surface. In
order to apply the proposed solution. the tested pile is represented by a circular cylindrical bar
of the same flexural rigidity and the same gross cross section area; resulting in E" =
2.55 x 10' tons/m2 and a =16.82 cm. The measured and theoretical displacements at the ground
surface is equated to obtain the Young's modulus of soil E= 1110tons/m2• and the Poisson's
ratio is taken as 0.50. The results obtained by the proposed final solution is shown in Fig. 17
together with the measured value[15] and the predicted solution by Poulos[5] for a load of
6 tons. which is well below the ultimate capacity of the system. The profiles by the proposed
solution are shown to be in close aggrement with the ones measured.

7. CONCLUSIONS

A rational study on the quasi-static bending of a circular cylindrical elastic bar partially
embedded in a saturated elastic half-space is presented here. The governing integral equation.
which is formulated under the approximation that the slope of the fictitious bar is equal to the
corresponding average over a corresponding circular area in the extended half-space. involves
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an additional unknown rigid body rotation of the fictitious bar, which are determined sub­
sequently by the condition of zero bending moment at the lower end of the fictitious bar. It is
found that if the curvature instead of the slope is taken as the bond condition between the
fictitious bar and the half-space; the analysis, thoup not involving such unknown rigid body
rotation, is not successful, since the kernel in the governing integral equation becomes
nonintegrable.

Only results of the final and initial solutions are attempted, since they should be sufficient
for most practical cases. If needed, the numerical results of the transient solution not given
here, may be obtained by a modified Ritz's method as described by Niumpradit[3] for the case
of axisymmetric loading.

Also it should be mentioned: The proposed approach is valid for the condition of small
displacements. The embedded bar as well as the embedding medium are assumed to remain
elastic. The medium are considered to be homogeneous, isotropic and completely saturated.
The bar, if not permeable, must be slender enough, so that the condition of permeability can be
assumed. A direct treatment for the case of an impermeable bar is obviously very complicated.
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APPENDIX-INFLUENCE FUNCTIONS

Influence IlInclions lor /inal sollllion
For the case of the final (infinite time) solution, the excess pore \-ressure vanishes, and the remained inlluence functions

defined in eqns (24) and (35) are given for 0s z, z':s Land z'" z· as follows:

'l'QO(z. z') = 8(1 ~ 1,)G{8(\ - 1')Ii(z - z')R,(lz - z'I)- (z - z')R2(/z - z'l)

+4(1 - 1')(3 - 21')R,(z +z')- «3 -41')(z +z') +2z'lR2(z +z')

where

+2zz'R)(z +z')

'I',i(z) =2~(2(1- I')S,(1)- ZS2(Z))

U~IQ(Z. z') =4(1 ~ 1'){4(I- 1')Ii(z- z')R,(lz - z'l) -(z - z')R2{jz- z'l)

+4(1- I')R,(z +z')- [(3 -41')z+ z')R2(z +z')+ 2zz'R)(z +z')}

U~.M(Z) = - ZS2(Z)

U~3Q(Z, z') =4(1 ~ 1'){- (\ - 21')SI(lz - z'l) +(z - z')Ii'(z - z')Silz - z'l)

+(\ -21')S.(z + z')+ (3-41')z - z')~(z+ z')-2ZZ'S3(Z+ z')

U~3M(Z) = NI(z) +zNiz)

I .
/lo°(z, z') = 8(1- I')G {- (7 - 8P)Ro(lz - z'l) +(z - z')h(z - z')R,{jz - z'l)

-(9-161'+8v2)Ro(z +z')+(3-41')(z +z')R.(z+ z')

- 2zz'Riz +z')}

I
IIMO(Z) =2G (- (1- 21')5o(z) +15.(z))

6(z-z')=-I, z<z'

(391)

(39b)

(39c)

(39d)

(3ge)

(39f)

(391)

(39h)

=1, z>z' (040)
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and R., S. and N. are integrals of Lipschitz-Hanke) type involving products of Bessel funclions, i.e.

R.(y) = fa't·-2e-'fJI2(tldt (y > 0, n= 0,1,2,3)

S.(y); fa't·-2e-'fJr!t)JM)dt (y>O,n ;0, 1,2,3)

N.(y) = fa' t·-2e-'fJl(~ld~ (y >0, n= 1,2).

(4Ia)

(4Ib)

(4k)

Due to Eason, Noble and Sneddon[!2), these integrals can be put in terms of complete elliptic integrals of first and
second kinds, of which numerical values are obtained by means of infinite series[!7).

Influence functions for initial solution
For the case of the initial (t .. 0+) solution, the inftuence functions defined in eqns (24) and (35) are specialized from the

transient solution by letting P approach infinity after all limits of the z variable are approached. The inftuence functions in
this case can be shown to take the same forms as for the final solution of the incompressible solid, i.e. " .. 0.5. In addition.
the inftucnce functions of the excess pore pressure, for 0s z, z' s L and z~ z', are

I
p/Q(z, z') = 2[S,(lz - z'/) +SI(Z +z') - 2z'~(z +z'»)

P/M(Z) = NI(z).

(421)

(42b)


